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The Bevalac has provided opportunities for nuclear experimentalists
by opening higher energy and mass ranges than had previously been
accessible. Greater energy meant that relativistic effects would now be
important and greater mass that new collective effects could show up.
Both of these expectations have been borne out and, consequently, theories
to describe the physics in this regime must address these experiments.

The way to ensure that relativistic effects are correctly dealt with
is to use a covariant theory, preferably with a well understood
low-velocity 1imit. The necessity for this treatment is becoming evident
in low energy nuclear structure physics, as recent successes of Dirac
phenomenology have shown.] Theories which have very few adjustable
parameters, but whose form is dictated by Lorentz invariance, have proved
to describe data weH.2 The failure of nonrelativistic, collective
theories to predict single-particle-inclusive cross sections3 also

indicates that the correct treatment of special relativity is important.

It is less clear how collective effects such as bulk flow of matter
arise. Single-particle models are not 1likely to be wuseful, since the
number of degrees of freedom in relativistic heavy-ion collisions is
quite large. Quantum mechanical models are also problematical due to the
strong interactions between particles and the many-body nature of the
colliding systems. Hence, classical statistical models of some sort are
the best choice for describing the physics phenomenologically in this

regime.

Work on collective models has proceeded in two directions. The first

is to approach the problem from kinetic theory. In such a description,
the colliding nuclei are viewed as collections of particles that interact
either pairwise or propagate in a mean field. Generally, an equation such
as the Boltzmann equation4 or the VUU equation5 is integrated by
following an ensemble of test particles. From this, a momentum
distribution function is derived which eventually yields the experimental

observables. Since the interactions treated are essentially two-body in



nature, collective effects do not arise in an obvious fashion from these

equations. Including corrections such as the bulk equation of state
helps to explain some of the observed collective behavior.

The other approach to the collision dynamics is through hydrodynamic
models. Nonrelativistic hydrodynamics can be derived from the Schriédinger
equation by separating the wave function into its real and imaginary parts
and . taking the 1limit A4»0. Many 1ideal and nonideal, nonrelativistic
hydrodynamic models have been proposed, but none of them adequately
explains the experimental data.3 Relativistic hydrodynamic models in
up to three spatial dimensions also have been deve]oped7 and have had

somewhat greater success.

Due to the above considerations, we have constructed a relativistic
hydrodynamic model to investigate Bevalac and higher energy, heavy-ion
collisions. The basis of the model is a finite-difference solution to
covariant hydrodynamics, which will be described in the rest of this
paper. Consideration of hydrodynamic flow alone 1is insufficient for
useful nuclear predictions. Pions are generated with the available energy
in the collisjon, and the nuclei break up after impact. We are treating

these topics as well and will describe our methods in papers following

this one.e

This paper is organized as follows. A brief review of the equations
and numerical methods we have employed in the solution to the hydrodynamic
equations forms Section II. Section III is a detailed description of
several of the most important subroutines. In Section IV, we present
numerical tests on the code. Finally, Section V has our conclusions and
prospects for future work. We also provide two appendices. The first
details running the program, while the second describes the output which

the program currently provides.
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SECTION II

Due to the extensive experience at Lawrence Livermore National
Laboratory with finite difference methods for solution of the hydrodynamic
equations, we chose to use these methods for our model. In practice, this
means that we finite difference fields that are centered on a mesh rather
than propagate marker particles carrying momentum and energy through the
grid, as 1is done in particle in-cell methods.7 Our method has a number
of advantages, among them being that, at least for simple cases, the
scheme can be shown explicitly to have second-order accuracy in time and
space. Due to the possible presence of shocks from the impact, this high
accuracy is desirable. Since the model is currently implemented on CRAY
computers with vectorizing compilers, the cost for second-order accuracy

is not prohibitive.

A general outline of the equations and methods used can be found in
Ref. 9. There, general relativistic two-dimensional hydrodynamics was
used to investigate accretion disks around black holes. Since the
formulation of the probiem is covariant, it does not depend on the number

of dimensions used. A brief summary of the equations follows.

In our work, we use the metric g"" = diag(-1,1,1,1). Hence
vy = det (giJ) =1. We retain vy 1in the -equations, however, because
this provides us with flexibiiity if we choose to perform calculations in
a reduced geometry such as spherical or cylindrical coordinates. For such
calculations, we merely have to supply a new y. Even in this case,
however, we will take y to be time-independent. In the following, we
denote the relativistic four-velocity by u", the baryon number density
by p, the pressure by P, the energy density by p+e, and the inertial
density by pI=p+c+P. We wuse as units throughout this paper, c=1,
the nuclear mass 1, and all lengths are in fermis.

Hydrodynamic equations arise from two considerations, the conservation

of mass, and the conservation of energy momentum. If the mass flux is
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written as pu", then the continuity equation is

1 2, (pu'vy) = 0. (2.1)

VY

Considering the 4-vector

>

Vo= (1, V), (2.2)
where 3 is the 3-velocity, the 4-velocity can be written

u¥ = W V¥, (2.3)

2
where W is the relativistic factor W = (1-v )-1/2. Letting D = oW,
Eq. (2.1) then becomes

A 3 -
at D + 7y v+ (Dvvy) = 0. (2.4)
Energy-momentum conservation arises from the divergence of the

stress-enerqgy tensor. For a perfect fluid this tensor has the form

™ = (ptetP) uu’ + Pg"v. (2.5)

Rather than using the divergence of energy-momentum tensor directly, we
can project it along the 4-velocity. This projection yields, after using

u u" = -1,

"]
—lua(Tw\/-f)=—-la(cu"v/)——Pa(u"/)=0 (2.6)
VY v o VY u Y VY u Y ’ ’

Substituting £ = eW, this equation becomes

1 >
atE + — ¥+ (Ev vy) + P2

W+ — v =0
y + 7,0 (W) = 0. (2.7)

t

Note that our proper energy density E;ETOO in contrast with, for
example, Ref. 5.



The momentum equation is found by evaluating the divergence of the

space-1ike part of the stress-energy tensor,

P) uVu. Y= . )
v, (ptetP) u uj + g’ 0 (2.8)

Defining a momentum S* = (p+e+P) Wu”, Eq. (2.8) becomes

d. . $S
i 3 1 HV, B Vv
3,S5.+ —(S.V vy) + a.P+5(9, = 0. 2.9

Egs (2.4), (2.7) and (2.9) yield five equations that we solve for the
collective flow. At present, we do not include a Coulomb field or a
restraining potential, due to the difficulty and cost of overlaying a
three-dimensional Poisson solver. These equations form the basis only of
the hydrodynamic part of the model; the details of the pion and
freeze-out models will be presented in later papers.

We have chosen to employ Eulerian methods to solve the eguations, due
to the high dimensionality of the problem. In an Eulerian calculation,
the computational mesh is fixed in space, and the fluid may be thought of
as flowing through it. This simplifies the problem in that coordinates
are always fixed in space, but leads to certain numerical difficulties in
correctly evaluating fluxes between cells. Lagrangian methods, where
comoving coordinates are used, are simpler since the coordinates flow
with the fluid.]o However, in more than one dimension, such methods
lead to severe distortions of the mesh which results in the computation
becoming significantly less accurate. Adaptive mesh methods]] in which
the problem forces grid points to move to regions of large gradient,
suffer the same problems as do the Lagrangian formulations. Hence, the
Eulerian choice is the most reasonable one for our problem.

The most difficult phenomena for any hydrodynamic code to handle are

shocks. These are inherently nonlinear and thus require special care.
The physics we are considering, i.e., matter impacting at high velocity,
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means shocks are certainly possible. Models designed specifically to
handle shocks have been investigated in one and two dimensions. Their
results indicate, among other things, that shocks may be responsible for
most of the entropy generation in the collisions we are considering.]z

The handling of shocks is thus a major factor in our choice of numerical

method and plays a large part in the testing of the code.

Another factor in designing a hydrodynamic code is choosing between
time implicit and explicit methods. In an explicit method, values at one
time step are calculated from those at the previous time. In implicit
methods, simultaneous equations are solved for all values to integrate
them.]a Explicit methods are simpler and Tless computationally
demanding. Since our problem is extremely dynamic, the computational
compiexity of implicit methods means that they would be too expensive to

use. We have thus chosen an explicit method.

The time step in explicit methods 1is limited by the Courant-
Freidrichs-Lewy (CFL) condition. Ffor linear equations and straightforward
methods, it is easy to demonstrate that the CFL condition is required for
a numerical solution to be stab]e.]0 This condition essentially
reduces to the requirement that the time step be small enough that no
signal can propagate across more than one cell width in a time step,
i.e., this is a causality condition. Note, however, that this provides
an upper 1limit on the time step only for stability of the numerical

scheme.

The choice of an explicit method leads to one of our greatest sources
of inaccuracy. Since the equations are not solved simultaneously as in
an implicit method, there is a self-consistency to the solution which is
missing. This arises especially in terms involving W = (1-v2)—]/2
which becomes very nonlinear as v » 1. Thus, we find that the
applicability of our model is limited in W. Methods have been developed
for relativistic fluid dynamics which may be able to get around this
prob]em,]] but, as above, have been demonstrated only in one spatial

dimension.
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Before detailing the workings of the code in Section III, we end this
section with a brief description of some of the numerical procedures
common to much of the program. First, we discuss our choice of grid. We
set up two interwoven, three-dimensional meshes of points. These are the
cell centers and edges (see Fig. 1). The edges are denoted by subscript
a, and cell centers by subscript b. This is a somewhat different notation
from what other workers have used, where cell edges are denoted by index
j and cell centers by j+1/2. Associated with each cell is a width, e.qg.,
(Axb)j is the width of cell j in the X direction. These intervals
carry the subscript of the point about which they are centered, rather
than the grid whose differencing yields them. Thus
AX =

. X .-X . . .
ai bi "b(i-1)
in Ref. 8. We further impose reflection symmetry through the Z=0 plane

Note that this is not quite the scheme used
and hence only calculate the behavior of the fluid lying above this plane.

A1l scalars are located in cell centers. In order to have second-
order accuracy in space, vectors must be staggered with respect to the
scalars. Hence, each component of a vector is centered on the face of
the cell corresponding to its direction, e.g., Vx is in the midpoint of
the cell with respect to the y and z directions, but at the edge of the
cell in the x direction. We place the physical edges of the grid one
cell in from the edge. Thus there is always one more physical location

for vector values in each direction than there is for scalars.

We evaluate differential equations by operator splitting; that is, we
split them into terms such as acceleration, advection, and pressure work,
and calculate each such term individually. We thus reach intermediate
results for each equation as we calculate terms using the values so far
calculated (not just the value from the previous time step). However, as
will be seen below, the velocity is calculated only once for each time
step. This is because our vectors and scalars are staggered in time as
well as in space and, hence, we cannot use the incomplete results from an
intermediate part of the calculation that would mix quantities at
different times. Once again, this can lead to problems with extreme
relativistic flow due to the lack of self-consistency.
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Figure 1. A typical 7y plane is shown. VZ and S; are located on

Z3 planes at the intersection of Yb and Xb 1lines. Note that the
intervals are ]apeleg by the point about which they are centered, rather
than the grid which is differenced to yield their value.
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As stated above, advection is the most critical part of an Eulerian

calculation. Numerical studies have shown9 that relatively minor
changes in the choice of an advection scheme can lead to dramatic changes
in results, at least for shock tests. Hence, our choice of advection
scheme was dictated by considerations of accuracy and stability. The
simplest sort of advection scheme, donor cell upwind differencing]4. is
only first-order accurate and may be inaccurate in regions of large

gradients.

Since we wanted second-order accuracy in all calculations, we were
forced to choose a monotonic scheme. These are so named since values
which are interpolated are guaranteed to be monotonic if the interpolation
points are. This property is important for two related reasons. In the
advection term of Eq. (2.4), for instance, the spatial derivatives are
evaluated in our code by taking a difference of the fluxes at the edges of
the cell. The density, however, is located at the center of the cell.
Hence, we must interpolate its value to an edge to evaluate the flux.
Physically, there cannot be more flux coming from a cell than is available
inside it at that time step. The monotonicity condition ensures this
numerically. There are, however, many ways of performing this
interpolation linearly, all of which yield slightly different results for
shock tests.9 Not only that, but this interpolation can be done
quadr‘aticaHy]5 or by assuming each cell is a Riemann shock tube.]6
Due to our experience with linear interpolation, and the known robustness
of the method, we have chosen to use a linear, second-order, monotonic

scheme.

In our impliementation of this scheme, used for both the vector and
scalar flux calculations, the minimum slope between the value in a cell
and those in its nearest neighbors js found. This slope is given the sign
of the difference between values linearly interpolated to the cell edges.
The flux is then evaluated by interpolating upstream with respect to the
velocity a distance 1/2 V&t deep from the cell edge using this slope
(Fig. 2). The fluxes at either side of the cell are then differenced to

yield a divergence.
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V X
VX5t
1 /, \ )L_-——’“'_—B
- - A i+1
Db j:=7—o~—“""'
A7 o,
X
=3
~Z D4
P
-
7”7
| | |
| | |
Xb Xb; ' Xb i, 4

Fiqure 2. The advection scheme used as applied to the density flux in
the x-direction. Since the difference between D; and Dj,y is smaller
than that between D and Dj_y, it is used for the slope. The crosses
denote the interpolated values. Since VX in the example is to the
right, Da is used as the extrapolated value at the cell boundary.

A1l such second-order schemes require an additional numerical term,
known as artificial viscosity, to stabilize them.]4 This artificial
viscosity serves to reduce the dispersiveness inherent in these methods.
A discussion of how such terms arise may be found in any standard
reference on the numerical solution of hyperbolic partial differential
equations]4 and will not be dealt with here. We should note that we
have included a 1linear term,]7 which will be described in the next
section, as well as a quadratic one. We have implemented them in such a
way that only heating is possible from the viscosity, even though it is

not strictly positive.

In one-dimensional calculations, the artificial viscosity originally

was given by

0 ~ (an)°n,, (2.10)
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where DI = WpI, and AV = Vj+] - Vj for AvV<0 and 0
otherwise, i.e., it is in effect only during compression. Its effect is
to spread out shocks over a finite number of zones, and thus the interiors
of shocks are not handled correctly. Since we are not interested in the
actual structure of shocks, but their effect on the nucleus, this is not

a concern. Equation (2.10) must be generalized to three dimensions

Q~ D2 AV,-2. (2.11)

for it to be wuseful in our code and, 1in addition, the compression
condition is checked for each direction individually, rather than for the
difference as a whole. The precise form of the artificial viscosity that
we employ can be derived nonrelativistically from the Hugoniot shock
conditions.]8 By eliminating the postshock density and wusing a
gamma-law equation of state, one finds that

+1 2 +1 2 P 2 172
_ yr! Y
P2 = P]+ a (av) Py + p]IAVI (( 2 )} (AV)™ + CS ) . (2.12)

where the subscripts 1,2 refer to pre- and post-shock conditions,

respectively, AV=V2—V] and CS is the preshock sound speed. By

considering the Timits AV >> CS and AV << CS, we arrive at

the form
Y+l 2
Q = 5 (av) Py + CSIAV|p] (2.13)

for the artificial viscosity, which should insure preservation of Hugoniot
relations across the shock. This is true for the nonrelativistic case but
is not appropriate relativistically. The pressure jump for a relativistic
shock, as given by the relativistic Hugoniot relations, suggests that
A(S/D) rather than AV is the appropriate difference to use. While we
have not been able to derive an equation analogous to (2.12) for the
relativistic case, the result just mentioned, along with dimensional

considerations, has led us to use a form similar to (2.13);

\
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Q = ";—‘ (a(5/0))°0° /W’ p - C, D A(S/D) (2.18)

We wuse monotonically centered differences 1in calculating A(S/D), as

opposed to the usual edge difference's.]g This has been shown to yield
extremely narrow and stable shocks in our tests.

The artificial viscosity enters generally as a correction to the
pressure. In a completely consistent covariant formulation, artificial
viscosity would thus enter the equations everywhere the pressure does.
Two problems arise from this. The first is another example of the lack
of self-consistency inherent in explicit codeé. Q and W are nonlinear
functions of each other and of the other hydrodynamic variabies and,
thus, it is difficult to properly time center terms involving them. As
noted above, this was a problem when we were considering W alone. With
the introduction of Q, the problem has worsened. This problem can be
attacked to some degree by iterating approximations to certain terms in

the operator splitting.

The other problem may be more fundamental. In Ref. 8 it was found
that introducing the artificial viscosity everywhere the pressure appears
did not yield stable numerical solutions to the hydrodynamic equations.
It has been known for many years20 that first-order formulations of the
retativistic Navier-Stokes equationszl yield unstable equilibria.
Numerical solutions have been found to relativistic hydrodynamic models
with viscosity,22 but neither of these models handle the viscosity in a
consistent fashion. In both instances, the viscosity is calculated as a
perturbation to the ideal flow by calculating it from the previous rather
than the current timestep. Such a procedure would not be expected to
apply near large gradients, as are found near a shock. Following Ref. 8,
we have included the artificial viscosity in the heating term, i.e., the
last term in Eq. (2.7), and the acceleration term, the spatial derivative
of P in Eqg. (2.9). Since the form of the artificial viscosity (2.14)
yields a small value in all but a very few cells, we do not include Q in

any of the other places P appears.
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The issue of multidimensional artificial viscosities has not been
treated widely 1in the Hterature.]B In the terms where we employ the
artificial viscosity, heating and acceleration, we need nonscalar values.
The purpose of the artificial viscosity is to spread out the shock
parallel to its direction of propagation and, hence, it makes sense for
this quantity to be higher order, e.g., a tensor, in order that it have a
direction. In our calculations, we perform our artificial viscosity
calculations in each direction separately, vyielding the diagonal
components of an artificial viscosity "tensor", ij. Then the total

resulting acceleration is of the form

.+ P) (2.15)

11

S; = 12 (0
1

and the heating term %(P + Qii) aiwvi.

The final numerical dissue to be discussed is boundary conditions.
For symmetric collisions, at least, we can use reflection boundary
conditions at 0 impact parameter, and a modified reflection condition for
finite impact parameters. The reflection condition is that scalars and
tangential components of vectors are constant across the edge of the
physical region of our grid and normal vector quantities are set to 0 at
the edge. The modified reflection conditions are that quantities are
reflected about the y axis as well as the x, as shown in Fig. 3. At the
other extreme, those boundaries of the physical region that are not
reflecting should be transparent. We insure this by only allowing
outgoing flux at the boundaries and by setting the exterior scalar
quantities to a linear extrapolation of their neighboring interior zones

so that their outflow will not be impeded.

This concludes the general discussion of the most important numerical
jssues faced in the code. In the following section, we will detail the
specific workings of the code itself.
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SECTION III

The program consists of a cycle of subroutines used to perform the
operator splitting algorithm mentioned above. The integration is divided
into acceleration terms, advection terms (including pressure work), terms
from the time integration of W, and those from the artificial viscosity.
In addition, the code has a generator for initial conditions, and graphics
and printout routines. The general scheme of the program is seen in
Fig. 4. Details of how to run the program are found in Appendix I.

Even with sharing of all matrices between subroutines through the use
of common blocks, large grids tend to use a large fraction of available
memory when the program is compiled with all matrices stored internally.
As a consequence of having CRAY X-MPs available with their large, solid-
state disk (SSD) memory, we have designed the code to run with a fast
external memory. Even though the SSD is much faster than an ordinary
disk, we have tried to minimize the number of times it must be accessed
and have only up to three x-y planes of values available at any time.
Whenever possible, we read and write to the SSD in these sets of three
but, whenever we difference or recenter in z, the planes must be handled
individually. By cycling the indices of the three planes modulo 3, once

three planes are read in, new planes can be read in and easily followed.

We maintain three types of organization of the memory. The scalars
D, E, P, W, y, and Q, as well as a scratch vector Al are serially
organized and separate. Thus, each has its own file in the SSD and is
organized by planes. These values are read and written in single
z-planes by the routines SREAD1 and SWRIT), respectively, and in sets of
three planes by SREAD3 and SWRIT3. The vectors S and V are organized
somewhat differently. We assume that all components of these 3-vectors
(note that neither is a 4-vector) will be needed when any one is and,
hence, they are organized by component for each plane. Thus, there will
be a VX plane followed by the corresponding VY and VZ planes, and then
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the next VX plane. These values are read and written by VREAD1, VREAD3,
VWRIT1 and VWRIT3. Finally, we have a scratch file with the capacity for
four full grids. This is accessed by WREAD1, WREAD3, WWRIT1 and WWRIT3.

The initialization routine, SETUP, is called from the main routine
ZADA, as are almost all other routines. Values are read into ZADA in
namelist format into the array SET. Table I 1lists the assignment of
parameters. The program can be restarted from dump files and parameters
respecified in the same way. When the parameters are read in, the
routine SETUP sets up the grids. The generator routine, PHSET, then
initializes the thermodynamic variables. Even though the nuclear skin is
only 1 fm across, a spherical shell of this thickness and uniform density
for a 208Pb nucleus, for example, would contain almost 40% of the
mass. Hence, we feel the surface profile is important. We thus require
the nucleus to have a realistic profile and, hence, scaling so]utions23
are not appropriate. This requires finer gridding so that we may
approximate the steep gradient in the skin region accurately. Once the
density profile is set, we use the generator routine PHSET to derive the
other code quantities from the equation of state, the initial velocities,

and the definitions of 0, E, Q, and S above.

The timestep is calculated in routine DTCON. Three CFL-like criteria
are applied. The first is the ordinary CFL condition. The local sound

speed is estimated from the thermodynamic formula:

»dP/dp |
c? - —s (3.1)

S pI
The inverse time corresponding to this is given by dividing this speed by
the smallest dimension of the cell. The second characteristic inverse
time is related to the artificial viscosity and is given by
cqi:lavil/AX1 if AV1<0. Finally, we can let our grid
move as well, and thus there 1is a characteristic inverse time

| 78X, . Rather than choosing the minimum
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Table I. Input parameters for the code.
Default values are not supplied by the program.

Kkm

im

im

symmetry parameter

1 z=8, k=22 reflection

2 1z=d8, k=2 and y(j=2) reflaction

3 2=8, k=2 and x(i=2) reflection

4 2=0 and y(j=2) and x(i=2) reflection

5§ 2=08, K=2 retlection, for x(i=2), reflect x, invert y
maximum value for density contours ( 20 contours )
switch for contour smoothing ( 8 = smoothing off, 1 = on )

time constant (fm/c) for print ( should be an integer fractiaon
of set(21), the picture cycle )

time constant (fm/c) for dumps

problem time (fm/¢c)

maximum temperature (MeV) for temperature contours (2@ contours)
time control

viscosity coefficient

threshhold in q/p for kinetic energy update

dx

dy

dz

dx ratio for exponential zoning

dy ratio for exponential zohing

dz ratio for exponential zoning

time constant (fm/c) for pictures ( should be an integer
multipie of set(B), the print cycle )

*** nuclear calculation parameters
eos switch

1 -- gamma-law ( requires input gamma )

2 -- quadratic ( requires input K )

3 -- BCK { requires input gamma and K )

4 -- Sierk-Nix ( requires input K )

5§ -- Skyrme ( requires input a, b and nu )

gamma or “a (MeV)" for EOS

nuclear incompressibillity coefficient K or "b" (MeV)
nu, exponent in Skyrme EOS

b/2 (b = impact parameter, fm)

offset of nuclei from the origin in the x-direction (fm)
mass number

nuctear charge

relativistic gamma-factor

multipiies velocity to determine direction (i.e., +1 or =1)
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characteristic time, we maximize these quantities over the mesh, and then
take the timestep proportional to the inverse of their sum. The timestep

is reduced for early steps to Jet initial conditions smooth out.

The initial part of the main program loop performs the Lagrangian
parts of the calculation, the acceleration and heating terms. The
pressure acceleration is performed in routine ACC and 1is a
straightforward differencing of the pressure but not of the artificial
viscosity. For calculations 1in a rotating frame, the centrifugal
acceleration is also calculated here.

The next routine 1is VISCR, 1in which the artificial viscosity is
calculated. Both 1linear and quadratic terms are calculated for each
direction, as described above. The resulting acceleration is calculated
in this routine, and the tensor diagonal components as well as their sum

are saved for later use.

The pressure and artificial viscosity heating terms are calculated in
routine HEAT to finish the Lagrangian part of the time step. The
advection of W is calculated according to the monotonic scheme described
above. Since W is a face-centered scalar, the differencing in each
direction is the same, unlike for the momentum as will be shown below.
Due to the use of the SSD, however, the terms look slightly different for
advection 1in the z-direction. The artificial viscosity heating is
calculated first. Since it is difficult to time center Q proper]y,9 we
do a simple forward time differencing on the energy density, and do not
try to recenter it. The pressure heating can be time centered more

easily, however, and the term we calculate is

n+l n Pn+ Pn' i.n
£ - E = =&t (__—5—__) (aiwv ) (3.2)
where
n' aP
P —P+-——ap|6p

S
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and &§p is the variation in p due to the term we are considering. Ffor

the heating, using the thermodynamic relationship dc=—PdV=P/p2dp
sp/p = —(VeVWVY)/(Wy). (3.3)

After the energy is updated from the artificial viscosity heating, the
pressure is recalculated. in routine EOS on a plane-by-plane basis. This
routine calculates the pressure given the velocity and energy and baryon
densities of the matter. There are generally several equations of state
available, which are chosen with an input parameter. This flexibility of
choice of equation of state is important since not a great deal is known
of this aspect of the physics. One of the primary motivations for this
model is a greater understanding of how the equation of state affects

experimental observables in heavy ion collisions.

Before performing any advection, we want to predict what the kinetic
energy should look like after all advections in the zones where artificial
viscosity heating has taken place, since these are where the largest error
may have occurred. This 1is because where the artificial viscosity is
large, A(S/D) is large, and hence the gradient may not be well
approximated linearly. Thus, we calculate the kinetic energy density

KE=T%-p-¢

(D+E) (W-1) + P(WP-1) (3.4)

in KETR and advect it here as we advect all other scalars in order to
provide an estimate of what it should be after all advections.

We then calculate the energy and density advection terms in DETRB as
given by the monotonic scheme described above. We finish this part of the
updating of the scalar terms by imposing boundary conditions in routine
BCOE. DETRB is the only routine that deals with the baryon density, so
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the density is handled in a conservative fashion. We have numerically
verified this by summing over the fluxes as they leave the grid and
integrating over the matter in the grid. The sum of these is always

constant to machine accuracy.

The computational cycle continues with momentum advection in routine
MOMTR. The general scheme of advection is as described above in
Section II, but a few changes must be noted. First of all, due to the
scheme we have developed to take advantage of the SSD, all z transport is
calculated first. Second, only when a momentum component is transported
parallel to itself does it need to be recentered. This 1is because
momenta are only edge-centered with respect to the direction they point
to, i.e., x-momenta are zone-centered in y and z, but edge-centered in
x. Hence, there is a slight difference in the way that the three momenta

are advected in any given direction.

Following the momentum advection, the boundary conditions on the
momentum are imposed. In the reflection-inversion case, the boundary
conditions have already been used by identifying edge cells with
reflected interior cells. Nevertheless, the routine BCVS imposes the

boundary condition at all boundaries for all our choices.

Routine VELR is then called to perform several functions. We first

update the relativistic factor W using
W = (1 + z(Si/DI)Z)]/z. (3.5)

With this new W, we recalculate the kinetic energy density (3.4) in cells
where Q/P is greater than a threshold given by an input parameter. The
difference between the kinetic energy density, as given by the advection
in KETR, and this one is then added to the internal energy density E. We
perform this update to approximately correct the error mentioned above.

We update into the internal energy E even though other quantities are used

since, for example, we must conserve baryon number. Next we carry out the
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integration of atE = —Patw. Since there are differentials with
respect to time on both sides, this equation can be integrated8 and the
term Patw handled easily. A time-centering procedure for the pressure
similar to the one used in the heating terms is applied here as well. In
this case, we derive §p from the condition that the lab density is not
changed by this update, although a new W has been calculated. Denoting
updated values by a prime, D=D' implies that

el _ W
o W (3.6)
and hence
W'-W
sp = -p(C )

After the energy is updated, the pressure is again calculated in routine
EOS.

This subroutine's last function is to calculate the velocity to be
used in the rest of the program, especially for advection. The velocity
is

Vi = si/(w DI) + Qi‘ (3.7)

Here @ = wex 1S the rotation vector if the frame is rotating with
angular velocity w. Thus Vi is the velocity in the rotating frame as
viewed from the center. The momentum, however, is in the lab frame.

Boundary conditions on V are also imposed in this routine.

SECTION IV

In developing a model such as ours, it is crucial that the numerical
procedures do not introduce spurious effects into the problem. We have
thus carefully tested the program against known analytic solutions to the
relativistic hydrodynamic equations. This gauges the accuracy the code
is capable of delivering as well as explores its limitations. Due to the

complicated initial conditions and interactions of the real problem we
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are trying to solve, we cannot solve it analytically; we feel, however,
it is best to test the numerical aspects of the model as extensively as

possible in order to understand the results.

Analytic solutions to the hydrodynamic eguations test the program as
a whole, but it is more efficient to test as many parts of the code as
possible separately to identify potential problems. Since we have
implemented the equations in an operator-splitting form, various physical
processes are isolated naturally into the different subroutines and,
hence, the testing is both easily done and easily interpreted. As will
be noted later with the analytic tests, these trials are generally
performed in each of the spatial directions separately since they are

intrinsically one- rather than three-dimensional.

It is possible to rewrite the hydrodynamic equations in terms of any
of the thermodynamic variables and, hence, they can be interpreted as
entropy flux transport equations as well. In the absence of a source
(i.e., a shock), entropy is merely transported through the grid and all
calculations should lie on adiabats. We can achieve such a condition by
setting the coefficient in front of the artificial viscosity to zero, in
which case all calculations should be adiabatic. Given an 1ideal gas
equation of state we should find that, for example, under compression the
fluid follows the behavior P=pY. We have performed this test on
the code by, as mentioned, setting the artificial viscosity to zero and
choosing such a small timestep that very little matter is transported in
or out of a zone during a test. In addition, we must choose initial
conditions so as to ensure that compression does occur. We do this by
choosing the velocity such that the fluid is at rest at the edges and
moving with 1its maximum velocity in the center, with the velocity
linearly interpolated to the points in between. At every cycle, the
velocity is set to this 1initial condition. This results in uniform
compression to one side of the midpoint, and uniform decompression on the
other. As can be seen from Fig. 5, adiabatic compression is observed for

a wide variety of velocities, including moderately relativistic ones.



- 24 -
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P = 0.3333 * rho*1.3335

0.8 1

Pressure{P)

0.6

0.4 1

0.2

Denslty(rho)

Figure 5. Pressure as a function of density for an ideal y=4/3 gas in
the first compression test of Section 1IV. Three different maximum
velocities are shown and all are fit quite well by an exponential of the

form P=ap4/3.

12
P = 0.3333 * rho*1.3335
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Density(rho)

Figure 6. Pressure as a function of the inverse of the relativistic
pressure to test the E=-P3a;W term of Eq. 2.7. Since we hold D=1,

p=%; and, hence, p:a(%)4/3 behavior is seen.
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This confirms that the heating routine works correctly. The next part
of the calculation that can be isolated and tested is the third term of
equation (2.7), which has no nonrelativistic correspondence and is thus
especially important in relativistic flows. By having a uniform velocity
throughout the grid, which is increased by hand each timestep, we observe
the compression in the furthest downstream zone. As with the previous
test, we set the artificial viscosity coefficient to zero and chose a
small enough timestep to ensure very little transport. The results of
that calculation are shown in Fig. 6 and are seen to very closely follow
the adiabat.

The remaining idea) adiabatic behavior that can be tested in a simple
way is the transport of quantities through the mesh. While the previous
calculations need only be carried out in one dimension, with this test it
is possible to test all three dimensions simultaneously. We have
performed two versions of this test. In both cases, we set up a realistic
nucleus in the grid, in terms of the scalar variables which characterize
the fluid. For the first test, we give the nucleus no initial velocity,
in order to see if the way that the problem is set up results in a nucleus
stable against decay. While this may seem an obvious and desirable
characteristic for any ground-state description of a stable nucleus, most
cascade models allowed nuclei to spontaneously evaporate particles unti)
it was discovered how to add a confining potential to the mode].24
While we do not have a potential in our model, since the pressure is set
to zero for densities less than that of normal nuclei, we should preserve
our nuclear shapes for ground states. We have observed this stability

over a very large number of cycles in these tests.

The other transport test is to set up a nucleus with a uniform initial
velocity and observe if it propagates through the mesh without appreciable
distortion. This 1is a general test of all 1ideal aspects of the
calculation, and our program performs this with no significant change in
energy. By running the problem until one or another edge is reached, we
can also ensure that transparent boundary conditions are correctly dealt
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with. We find no appreciable pileup of density or energy at the edges
and, as well, when our reflection-inversion boundary conditions are used,
the nucleus reappears as expected.

The final, most difficult tests exercise the non-ideal aspects of the
calculation. These involve one-dimensional shock tests where analytic
solution s possible. In general, these problems exhibit scaling

solutions, i.e., they are functions only of z/t. This simplifies the
equations considerably. The two tests we have performed are the

relativistic shock tube and the relativistic wall shock.

The relativistic shock tube is the analogue of the Riemann shock tube,
which is a well known test problem for classical hydrodynamic codes. The
physical situation is an infinite tube filled initially with a gas on
either side of a diaphragm. This gas is held at different densities or
temperatures on either side of the diaphragm. At the start of the
problem, the diaphragm is removed. A rarefaction wave proceeds through
the higher density material, while a contact discontinuity and shock
proceed through the lower density one. The relativistic version is
achieved by setting up the problem so that the internal energy of one of
the sides is large with respect to its mass. Then the material flowing
into the low-density region will move relativistically. Analytic
solutions to this problem are known.25 and thus the results of the
numerical calculations can be verified. We have performed relativistic
shock tube tests with the initial conditions as in Ref. 8, and the

results are shown in Fig. 7, along with the analytic results.

The final test which has been performed on the code is in some sense
the most difficult, since it tests shock phenomena the most rigorously.
This is the wall shock, in which cold matter hits a perfectly reflecting
wall. The fluid is stopped, and a shock proceeds out from the wall,
leaving highly compressed, shocked matter behind it. A three-dimensional

version of this is Noh26 problem, in which matter spherically implodes.
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The analytic solution to this problem is given by Rankine-Hugoniot
which

nonrelativistic flows.

shock conditions, can be derived for relativistic as well as

We have performed this test for a wide range of

velocities and, in fact, this test helps to define the boundaries of

applicability of our model. 1In order to compare our code to a previously

published one, we have performed the shock tests of Centreila and
w11son.27 At values of W, ranging from near 1 to W greater than 10, we
get very good results with postshock densities generally less than 10%

This

the artificial viscosity to an unrealistically large value as has had to

different from the theoretical values. js achieved without varying

be done with conventional artificial viscosities. We compare our results

in Fig. 8.
6 o
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Figqure 8. Percentage error in compression for the relativistic wall
shock. Crosses denote the current code, squares for the results from
Ref. 27. Note that the latter used an artificial viscosity constant of 7
to achieve their accuracy, while the present calculations are with

parameters as used in nuclear calculations.
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In conclusion then, we have devised and performed a number of tests to
verify both that separate components of our calculations are proceeding
correctly and that the components work together correctly as a whole. We
feel that these tests provide us with a comprehensive overview of the

capabilities of our model as well as to define the parameter space in
which we can expect it to perform correctly.

SECTION Vv

We have developed a hydrodynamic model in order to simulate heavy ion
collisions at  high energy.za'z9 We feel that the hydrodynamic
approximation is justified in these collisions due to the significance of
collective effects in high energy nuclear collisions. For these
collisions, the hydrodynamic model should provide a good description of
the collective flow observed. To make real experimental predictions,
however, we must add features to the model which will be described in
forthcoming papers. The first of these is a pion model.8 Since pions
carry a large fraction of the energy and entropy of such reactions, we
have modeled their production dynamically as opposed to chemically. The
last piece which must be added is a 1ight fragment freezeout. Since heavy
fragments are difficult to detect, most data are on elements lighter than
carbon. Hence, we must also incorporate a physical model that will take

us from our bulk flow to the observed 1light fragments.
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APPENDIX I. RUNNING THE COMPUTER PROGRAM

In this appendix we will present a brief guide to running the program
itself. Note that the pion model is run at the same time as part of the
compiled code, so running the program will involve the pion model as well,

provided the input parameters are chosen appr‘opr‘iately.8

A11 input to the program is through an input file, which has the
namelist parameters mentioned above. Table I presents a 1ist of the SET
parameters appropriate to the hydrodynamics part of the model. There are
further parameters required for the pion model which are described in its
manua].8 The program has the ability to occasionally dump all working
variables into files to be used for restarts, so the first part of the
input file must tell the program if this is the case. A variable IRESTART
is used to specify the name of a file; if IRESTART is blank, then no
restart file is used, otherwise the file specified by the Hollerith string
is loaded. Following IRESTART, the string "$END" must appear on a

separate line to denote the end of a namelist.

The SET parameters follow, as described in Table I and Ref. B. The
hydrodyanmics code may be run alone by specifying SET(34)=0. Following
these parameters, another "$END" line appears. If the run is a restarted
dump file, the SET parameters from the previous run are used, and the
above parameters are ignored. In this case, changed values of the SET
parameters may now be specified, followed again by "$END". Even if the
run is not a restart, the last "$END" must be provided.

The 1input file must be given the name "INxxxx", where xxxx is a
string of up to four alphanumeric characters. Then the program is run by
giving the controlee name, generally "xpress", followed on the same line
by "xxxx" from the input file name. If not, the program is invoked with
just the controlee name and will search for the file "in3d". If there is
no appropriate input file found, the program will not run.
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The program will generate dump and output files as specified by the
input name. Three kinds of files are generated: dumps, graphic output,
and text output. The dumps are generated at intervals specified by
SET(9). Each is given the name "xxxxnnnn", where nnnn is the time of the
dump in tenths of a fm/c and is a zero-filled, four-digit number. Graphic
output is in DLTV format and is found in a family of files with the names
“dOxxxx00" through "dOxxxxnx". If "xxxx" is less than four characters,
they will be padded on the left with random alphabetic characters so that
the graphics filenames are always eight characters. The main text output
is in the file "outxxxx" and extra output, generally for debugging or
special analysis is found in "outdxxxx". Information from the pion mode)

is given in "pionxxxx".

APPENDIX II. OUTPUT FOR THE PROGRAM

Output from the program is found in three types of Ffiles, as
mentioned in Appendix I. The first, dumpfiles, are used only to restart
the program and, hence, will not be described here. The other output
files will be described below. Note that these descriptions are current
as of late 1987 and are subject to change depending on the development of
the model.

OQue to the large number of cells in a three-deimensional calculation,
cell-by-cell information in text form is of limited usefulness. Thus, the
text file "outxxxx" contains cell information only for cells along the
three axes. For each cell along the axis, its proper density p (in
units of normal nuclear density), proper energy, three-velocity and
momentum along the axis and pressure are given. In addition, at each
time of printing, the total density in the grid is given, as well as the
integrals of kinetic and internal energies. The entropy, density-weighted
average temperature and maximum density are printed. Finally, the amount
of material and energy that has flowed out of the grid also is shown.
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Graphical output is generally much easier to grasp in a calculation
such as the code performs and, hence, we provide a number of plots at
intervals specified by SET(21). There are contour plots of the proper
energy and density and temperature in the plane 7Z=0, as well as density
profiles along the x- and y-axes. We also provide color plots of the
density 1in this plane, with pions projected from all Z-values. The
length of the arrows indicate the pion momenta, and their tails lie at
the present projected position. These color plots cannot be viewed on a
TMDS; they can, however, be previewed on a MAGIC terminal. The color
table may be specified by substituting the routine RGBGEN in the program.
Following Danielewicz and Odyniec,30 we also plot transverse momentum

versus rapidity.
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